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The Design and Performance of Three-Line
Microstrip Couplers

DIMITRIOS PAVLIDIS, STUDENT MEMBER, IEEE, AND HANS L. HARTNAGEL, SENIOR MEMBER, IEEE

Abstract—An analysis is presented of microstrip-coupler circuits
consisting of three parallel lines. The analysis is based on the existence
of three mode impedances. Design equations describing the performance
of this type of coupler are derived and allow the prediction of its matching
and transmission properties. Numerical results using finite-difference
methods are presented for a three-line microstrip coupler made on an
alumina substrate (¢ = 9.8). Experimental results for a 10-dB three-
line coupler with a center frequency of 4 GHz show that its performance
can be reasonably well predicted by the developed theory.

I. INTRODUCTION

OMMUNICATION SYSTEMS and other micro-

wave applications often require the use of special
coupler structures such as a three-line symmetrical coupler
- for combining two independent signals on to a common
third line.

The properties of multiconductor networks have been
examined extensively by many authors [1]-[6]. First
results [1], [2] were limited primarily to the design of
microwave interdigital filters. The geometry of these net-
works allows one to neglect the coupling capacitances
beyond the nearest neighbor conductors. In this way wave
propagation along the lines can be described by the use
of two orthogonal TEM modes, namely the even and odd
mode [1]-{3]. A more complete analysis taking into
consideration the effect of the fringing capacitances beyond
the nearest neighbors of an array of three conductors also
exists [4], [5]. Yamamoto ef al. [5] introduced three modes
of propagation and five characteristic mode impedances,
three of which are independent. In their theory the mode

impedances of the center conductors are related to those of

the side conductors by a special condition for the capacitance
or potential coefficients of the structure. The theory
developed in this paper makes no use of Yamamoto’s
condition, which was possible by making a suitable choice
of the modes of propagation. These modes of propagation
were excited in the conductors by using voltage and current
sources whose amplitudes were tailored to the particular
network geometry.

The fundamental modes of propagation for a network
having three parallel conductors are derived in Section 1I
of this paper. The coupling beyond nearest neighbors is
included and the wave propagation is described by only
three mode impedances. Section III describes the impedance-
matrix derivations for an array of three lines of finite
length excited by the method described in Section II. The
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relations predicting the performance of such a network
when used as a coupler are derived in Section IV. The
method used for the calculation of the mode impedances
is outlined in Section V. Mode-impedance data are presented
in Section VI and are valid for couplers made on alumina
substrates of a relative dielectric constant k¥ = 9.8, Finally,
Section VII describes experimental results obtained with a
construction of a three-line coupler which is designed in
accordance with the developed theory. Such a type of
coupler has been successfully used for combining the signals
of two pulsed Gunn oscillators employed in the phase-
shift-keyed (PSK) X-band modulator of [7] and [8].

II. DERIVATION OF THE FUNDAMENTAL
MODES OF PROPAGATION

Every TEM propagation along a set of three parallel
lines having a fourth line as a common earth can be des-
cribed by the use of three fundamental eigenvectors which
are orthogonal to each other [9]. The assumption of a
TEM mode had to be made for the following derivations
because of the resulting relatively simple approach to the
problem. No pure TEM transmission can, of course, exist
in a microstrip circuit, like the one which will be explored
in the later parts of this paper, because of its nonhomo-
geneous nature.

In order to derive the fundamental modes of propagation,
it is necessary to assume three infinite long parallel lines.
If wave propagation takes place in the y direction, then we
can write, according to conven‘uonal transmission-line
theory,

vl _
e = ~IA

In the previous equation the elements V;and [;, (i = 1,2,3)
of the matrices [ V] and [7] denote the voltage and current
at the port i of the network and [z] is the square 3 x 3
matrix of the impedance coefficients z;;, (i,j = 1,2,3). From
symmetry considerations we have, of course,

(IL1)

Z11 %12 213 |4 I
[z] = |z12 222 212 [Vl= |7, 7] = |1,
Z13 Z12 %11 Vs I

(1L.2)

The cigenvalue equation for the impedance matrice [z] is
(2] — MEDIx] = 0 K

where [x] is a matrix with columns denoting the eigen-
vectors of [z], [E] is the unity matrix, and [A] = A[E]
is a matrix whose diagonal elements are the eigenvalues of
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[z]. Equation (II.3) results in a third-order equation which
has the following solutions:

A=z — 23 (I1.4)
Ay =210 + 222 + 213 + \/(211 — Z33 + 2;3)? + 824,%]2
(ILs)

and

Ay = [z41 + 255 + 235 — V(11 — 225 + 213) + 82;5,7]/2.
(IL6)

The eigenvector x, corresponding to the eigenvalue 4,
can be easily calculated by introducing (IL.4) into (I1.3)

-1 Xat
x,=k| 0| = |xp
1 Xa3

where k is some arbitrary value of x,;.
A more laborious calculation gives for the remaining two
eigenvectors

L7

1T [
X =k |n| = |%:2 (I1.8)
[ 1] | Xb3
and
F 1 ]
x. = k|| = |xa (IL9)
L 1 J _xc3_
where ‘
N = —K+L+ Mz, (11.10)
K + L + N Zi3
g, = KL+ Mz, aL11)

K - L + N 213
L = [(zy1 — 235 + 213)* + 82,27

2
221 (IL12)
213

K=2z,—25

M=3213 N=213+

and k is the arbitrary value of x;, and x_,.
It can be easily shown that the following simple relation
holds between #; and 5, for any value of z;;:

Mz = —2. (1.13)

Equation (II.13) shows that by assigning a value p to #y,
it is always possible to express #, as

N2 = —2/p. (I1.14)

From the eigenvectors x,, x;, and x, we can now derive
the following conditions for each of the three possible
voltage modes: .

OEmode V,= —V,V, =0 (IL15)

EEmode V,=V, =1 L6
u

00-mode V, =V, = —‘5‘ v, IL.17)

_—K+L+ Mz, (IL18)

K+L+ N z5
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where V,, V,, and V_ are the voltages exciting the lines,
a, b, and c, respectively. In accordance with the afore-
mentioned notation of the voltage modes, the eigenvalues
(I1.4)—~(I1.6) will in the following be referred to as mode
impedances Z,,, Z,,, and Z,,, respectively.

It will now be shown for a network which is excited
according to (I1.15)—(I1.17) that the characteristic impedance
of the center conductor will always be the same as that of
the side conductor; this implies that it is not necessary
to impose any condition for the capacitance coefficients
of the network (as used, for example, by [5]). The OF
mode of our theory is the same as the C mode of [5], but
the EE and OO modes are different by the factors 1/u and
1/2, respectively. The parameter y is an internal property
of each particular network. As u changes, with the geometry
of the network, the value of the characteristic impedance of
the center conductor is automatically adjusted to that
of the side conductors. By using the same method as [5]
we obtain the following expressions for the static capac-
itances to ground per unit length of each conductor:

OE-mode Cy, = Cppe = €11 — €13 (IL19)
EE—mOde Caee = Ccee = (11 + MUCya + 61'3
Cbee = Cyy + 2012 (II.ZO)
i
2
00-mode Caoo = Ccaa =€y = = €13 + €13
U
Cooo = €22 — HCyz I1.21)

where c¢;;, (i,j = 1,2,3) are the capacitance coefficients of
the network. In order to have equal mode impedances for
the center and side conductors, we need

Caee = Cbee = Ccee

Caoo = Cbon = Ccoo (IL.22)
or '
o= —(cy = €22 + €13) = Vlers = €33 + €13)" + 8cy5?

2¢4,
(I1.22a)

The condition expressed by (II.22a) is, in fact, always true
because it is equivalent to (I1.18), which is the fundamental
parameter employed for the definition of the voltage modes.
The equivalence of (I1.22a) and (II.18) has been checked
by numerical substitutions of the results obtained in
Section VI; the values of u calculated in this way were in
both cases the same.

As (IL.22a) is always valid, it is a matter of algebraic
calculations to show in the same way as [5] that the follow-
ing conditions apply for a network excited according to
(II-15)-11.17):

OE-mode Q, = 0, 0, =0 (IL.23)
EE-mode Q, = Q, = Qy/u (IL.24)
00-mode Q, = Q, = — g 0, (I1.25)
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Fig. 1. Sketch of the electric-field lines for the fundamental modes

existing in a three-line microstrip coupler.

where Q denotes the charge per unit length of each
conductor. \

Fig. 1 is a sketch of the electric-field lines for the three
fundamental modes existing in an array of three parallel
lines excited by equal magnitude voltages but having the
phase relation implied by (1.15)-(11.17).

III. IMPEDANCE MATRIX

The fundamental modes derived in Section II can be used
for the evaluation of the impedance matrix of a three-line
coupler. The method of calculation is based on the analysis
presented in the classic paper by Jones and Bolljahn [10].

The [Z] matrix is obviously expected to be a square
matrix of order six since it refers to a coupler with three
lines of length /, which is a six-port network. Each fun-
damental mode is excited by ideal current generators
placed at the ends of the coupled transmission lines and
having a certain phase and magnitude relation between
them (Fig. 2). Under the aforementioned conditions, the
electromagnetic coupling occurs over a finite length / and
the total terminal voltages and currents can be derived by
superimposing the corresponding values of voltage and
current for each of the OE, EE, and OO types of excitation.

The current generators of Fig. 2 have the following values:

. I . R
liee = Ulgee I3ge = Hizee

Ziloa == iloo ié’oa = i200' (IIII)
The voltages U produced by the employed current sources
can now be easily expressed as a function of the position z
along the line and of the corresponding mode impedance
and current amplitude; in view of brevity the values of U

are presented for the OF mode only

. . cosk(—z)
U(lao)e = '—G(l?e = —'.]Zoelloe -
sin kl
(@) _ . cos kz
Uz?e - —6(2‘;)e = =JLoel20e —
sin ki

o), =08, = 0. (11L.2)
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Fig. 2. Excitation of the fundamental modes of a three-line micro-
strip coupler by suitable current generators placed at its ports.

The total currents I, (m == 1,---,6) at each port can be
expressed as a superposition of the mode currents iy,
@i = 1,2, and j = oe,ee,00) resulting in six equations, the
solution of which gives the values of i;; in terms of Z,,.

Similarly, by superimposing the mode voltages U and
introducing the i;;(Z,) values into (IIL.2) as well as into the
corresponding equations which hold for the other two
modes, the total voltages V,, can be expressed in the form
Vm = 22=1 Zmnln-

The coefficients Z,, can thus be evaluated from the mode
impedances Z,,, Z,,, and Z,, and the electrical lengths
0 = kl. The elements of the impedance matrix [Z] are
given in Table L. A different phase velocity has been assumed
for each of the three possible modes, and therefore the [Z]
matrix contains three different electrical lengths 8,,, 0.,
and 0,,.

IV. THEORETICAL PREDICTION OF THE PERFORMANCE
OF A THREE-LINE COUPLER

An attempt is made here to express the properties of a
three-line coupler, such as coupling coefficients, isolation,
ahd matching in terms of the mode impedances Z,,, Z,,,
and Z,,. This will enable the designer to predict theoretically
the desired performance of the coupler for each particular
application. :

The major difficulty in the analysis here is the expression
of p in (IL.18) in terms of the mode impedances only. It
can be seen from (IL.18) that the value of p depends on the
geometrical configuration of the employed coupler. Every
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analysis will therefore lose its generality by assuming some
arbitrary g, and thus simplifying the equations for the
orthogonal eigenvectors (IL.7)-(I.9). An analytical ex-
pression of g in the form of u = u(Z,.,Z..Z,) could,
however, not be derived because it is mathematically
impossible to express all the z;,2,,,2,5,243 impedance
coefficients of (I1.4)-(I1.6) in terms of Z,, Z,., and Z,,
only. One of the possible approaches to the problem is to
express U as (Z,,,Z .2 ,0,212), and then find the set of mode
impedances which satisfies the desired performance for
some arbitrary value of z,,; the design procedure becomes,
however, in such a case very complicated, because there is
a need for some optimization routine which can calculate
a realistic set of values for Z,,, Z.,, Z,,, and z;,, and reject
all the nonrealistic solutions.

Another alternative is, of course, to reduce the z;;
coefficients by one, by making some reasonable assumption
such as
av.n)

The previous assumption can also be written in the
following form:

21y = 233,

€11C13
€11 + €2 + €13
(IV.1a)

where the ¢,; are the capacitance coefficients introduced in
Section II. By neglecting the coupling beyond the nearest
neighbor conductor (c,3 = 0), (IV.la) reduces to the
approximation expressed by [3, eq. (7)]-

The impedance coefficients z;; can now be written as

C11C12
€11+ €1p + Cy3

€22 = €11 —

le = 222 = %(Zee + Zoo + Zoe) (IV2)
Z43 = %(Zee + Zoo - ZZoe) (IV3)
Zyp = "1= [Z(Zee - Zoo)2 - Zoe
BERVAT:
E (Zoe - Zee - Zoa) - ZeeZao]' (W4)

It can be easily shown that u is now given by

- Zoo)2 - Zoe(Zoe
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Fig. 3. (a) Sets of voltage sources required to excite the fundamental

modes of a three-line coupler. (b) Driving of a three-line coupler
by a voltage source.

_ Zee _ Zoo)

= 3 2

2Z,, —

The validity of the assumption (IV.1) has been checked
using the results of the numerical analysis which will be
described in Section V of this paper. The values of z,; and
z,, have been compared for a large number of possible
geometrical configurations of the coupler and their difference
never exceeded 2.5 percent; similarly, the value of p given
by (IV.5) is different from the correct value by not more than
4.6 percent. .

For communication applications it is often required [7],
[8] to have a three-line coupler with the following
characteristics:

1) a perfectly matched input side port;

2) perfect isolation (decoupling) of the input side port
from the side port which is at the same end of the
lines [for example, ports 1 and 3 of Fig. 3(b)].

— 172 .
= ZeeZoo] . (IV.5)

The implications of the previous two conditions will now
be examined. The scattering matrix of a symmetric six-port
network consisting of three parallel conductors [Fig. 3(b)]
can be written as

ol | 2
[S] = _“SSZ- E gf] (IV.6)
~ where »
% B ]
[S'T=|g 0 B
7 B o
and
s e ]
[S*] = e n ¢f. av.n
|/ & 4]
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. TABLE 1
THE ELEMENTS OF THE IMPEDANCE MATRIX OF A THREE-LINE COUPLER
2
zOe 'zee -ZOO
zZ =Z,,=2 =1Z = -3 [———cot@ + cot 9 + cot 4
11 33 44 66 2 oe P ee 2(2+,u2) oo
uzee Mzoo
zZ = 7 = 72 = ZA = 7 = 7 = 7 YA _j [—__.. cot 9 - cot O ]
1 54 2 pl
12 2 23 32 A5 54 56 65 +n ee T L oo
[ Zoe ec uZZOO
z = Z = Z = Z = «j - —== cot & + cot 8 + cotQ]
13 31 46 64 2 o Z+H2 ee 7«(2+U2) oo
. 2
Z nz
. 1 ce 1 00 1
2, =2, =2, =2, = -3 [- 28 + . - ]
14 41 36 63 7 s:LnOoe 2_‘_”2 ..,*nGee 2(2+“2) sin®
uz uz
2, =2, =2, =17, =731 z z 7., = -3 | —28 1 - o0 1 ]
3 [
15 51 24 42 26 62 3 57 [2_(_“2 sind__ 2+u2 sin@
2
z u°z
1 ee 1 00 1
Lo, =%, =2 , =12 —-3[-—2’25 + — + ]
16 61 34 43 2 1n90e 2_,_u?. olngce 2(2+|J.2) sz.ncoo
[uzzee 22,4
zZ =7 = =3 cot @ + = cot 8
22 55 2+u2 ee 24t oo]
2
z
Z,.= 2., = j [u s .2 P
25 52 2+u” srnQe Z"‘HZ sanoo

By applying the unitary property of [S], it is possible to
show that if @ = y = 0 and 8 # 0, then the assumption
of 6 = ¢ = 0 leads to the obvious contradiction of § = 0.
This shows that a coupler satisfying the previously men-
tioned conditions 1) and 2) can never be perfectly directive.
A finite degree of coupling will always exist between the
input side port and 1) the center port adjacent to its terminal
[for example, between ports 1 and 2 of Fig. 3(b)], and 2) all
the other ports [4, 5, and 6 of Fig. 3(b)] of the opposite
side.

The matching and coupling conditions of a three-line
coupler can be derived from the impedance matrix whose
elements are given in Table 1. Such a derivation is, however,
very tedious and does not provide any physical insight to
the problem. The method which will be used in this section
is the one which was initially proposed by Jones and Bolljahn
[10] and then extended a decade later by Levy [11].

Voltage sources of suitable values as shiown in Fig. 3(a)
have been considered as being connected to the ports of a
three-line coupler; their phase and magnitude relation is
such that for each set of sources only one mode can be
excited. Additionally, a superposition -of all the modes
results in a configuration where an input signal of amplitude
1 is connected to one of the side ports of the coupler and all
the others are terminated in Z,, [Fig. 3(b)]. Each line of the
coupler can be treated for some particular mode excitation
as a two-port network for which the reflection and trans-
mission coefficients arc related to its [48CD] matrix
through the following equations [11]:

A+ B|Zy— CZy— D

= (IV.8)
A+ B|Zy + CZy + D

. 2
A+ BZy + CZ, + D

(IV.9)

By introducing the values of the elements of the [ABCD]
matrix into (IV.8) and (IV.9), one obtains the reflection
and transmission coefficients of each mode in terms of the
corresponding mode impedances and electrical lengths

; [Z_ - é] sin 0, (IV.10)
rx = ZO Zx
o
2
T, =2 av.in
Oy

where ¢, = 2cos 0, + j[(Z,/Zy) + (Zo/Z,)] sin O,, and
x = oe, ee, 0oo. Using the superposition principle, the total
voltages emerging from the ports of the coupler are found
to be

1 u?
Vi=dlp0 + —— Tee + =5 T 1v.12
v 2 + 1 22 + p?) av.12)
u
V, = ree — roo IV13
V= =il + — T+ —% T, avid
3 2+ oe 2 + Ilz ee 2(2 + /JZ) oo .
2
p 1 ‘
V,=-3T,, + —— T,, + ——— T,, (V.15
P Tag 2 22 + p) )
4 .
Vs = T, - T, V.16
Ve=iT,+ — T+ £ 1, avm
2+ p? 22 + u?)

Although the phase velocity is different for each of the three
possible modes, the assumption of equal electrical lengths
®,. = 6., = 0,,) will be made for the following calculations.



636

One of the major requirements of a three-line coupler is to
have matched side ports in the operating frequency band.

Equation (IV.12) gives for V; = 0 and for a quarter-wave-

length coupler the matching condition
[1 - m][ZoezzeeZZooz - 206]

+ ZOZZoe2[Zee2 - mZooz] + ZOA'.[”nZee2 - Zooz] =0

(Iv.18)
withm = —p?/2,
If the matching condition V; = 0 is satisfied, then the
coupling coefficient from ports 1-3 [Fig. 3(a)] is

V, = =T, (IV.19)

Since in practical applications it is usually required to have a
perfect isolation between two adjacent side ports, (IV.19)
suggests that T',, should in such a case be zero or, in other
words, that the mode impedance Z,, should be equal to the
terminating impedance Z, '

Zo = Z,,. (1V.20)

The matching condition (IV.18) can be simplified under the
condition (IV.20), becoming

zz2 =1 [1_+_m (z..2

’—Zooz
211 —m )

1 + m\?
+ \/( ) [Zeez - Zooz]z + 4Z€ezzﬂl72] -

1—m
av.2n

Under the conditions of perfect matching and isolation the
coupling from port 1 to port 2 can be evaluated as

V2 = l ree.
H

av.22)
It can be seen from (IV.10) and (IV.22) that the maximum
value of I',, and thus of ¥, occurs for the case of a quarter-
wavelength three-line coupler. Equation (IV.22) can
therefore be written as

— 1 Z'ee2 _ 202

. (IV.23)
1 Zee2 + ‘ZO2 -

2

The coupling coeflicients of all the remaining ports are as
follows:
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Several methods exist for the computation of the charac.
teristic impedance of single- or multiple-conductor lines-
Yamashita and Mittra [13] have proposed the use of
integral equations calculated with the aid of Green’s
functions. Gupta [12] uses the electrostatic- and magneto-
static-energy integrals in order to calculate a lower and an
upper bound of the impedance; the resulting impedance
values are therefore very accurate because they are based on
the average value of the aforementioned bounds. Itakura
et al. [4] used a conformal mapping technique in order to
derive exact solutions for a structure consisting of three
parallel conductors in a homogeneous medium. Conformal
mapping techniques give, however, only approximate
solutions for inhomogeneous media. The method adopted
for our derivations was a finite-difference numerical
solution of Laplace’s equation V2§ = 0 in a two-dimen-
sional space and the use of Gauss law for the calculations
thereafter. The wave propagation along the three lines
has been assumed to be a pure TEM one and the lines were
enclosed in a shielding box.

It is known that the impedance matrix of a coupler can
be written as

1 - -
[Z]2 = ZE [cair] 1[cdielectric] ! (V'l)

where [Cgierecrric] and [cu:] are the static capacitance
matrices of the structure with and without an air-dielectric
interface. The evaluation of the previously given capacitance
matrices allows the calculation of the elements z;;, (i,j =
1,2,3) of the impedance matrix and, consequently, a
knowledge of the mode impedances Z,,, Z,,, and Z,,,.

The model which has been used for the numerical analysis
is shown in Fig. 4; two grids, a main one and a finer one in
the vicinity of the lines, have been used because of accuracy
considerations. The potential at each of the nodes is cal-

‘culated using the five-point formula which is known to

give an error of the order of 4* (where 4 is the distance
between two successive nodes). A better accuracy is, of
course, expected in theory by the use of the nine-point
formula, but in practice [14] the five-point formula seems
superior because of the existing reentrant corners where a
singularity of the electric field exists.

The execution of the developed finite-difference program
is continued until an accuracy of 10™# is achieved. Then the

2 2 2 2 2

V4 — __j [_1 + Zae 5 2Zee(Zoe -:. ZOD ) Z_I— ILL fﬂa(zoe 2+ Z"?e )] (IV'24)

2 2 + I't (Zee + ZDE )(Zao + ZOE )

2 .
Vo= —j ot Zooee t Zuc ZoZow — Z0) IV.25)
2 + # (ZCEZ + Zoez)(zoﬂz + Zoez)

2 2 2 2 2

VG — _j [_1_ + Z_;_e 2Zee(Zoe -L- ZDO ) 2-|- # ?00(Zae 2+ Zee )] . (IV.26)
2" (Zo + ZNZAE + 20

V. THE MODEL USED FOR THE NUMERICAL ANALYSIS
oF THE THREE-LINE COUPLER
In this part of the paper, the dependence of the charac-
teristic mode impedances on the geometry of the coupler
will be derived by the aid of a digital computer.

charge associated with ecach conductor is evaluated by
integrating around it. Because of the boundary between the
main and the fine grid of Fig. 4, it was necessary to derive
some special finite-difference formulas for certain nodes of
the grid. The optimum over relaxation factor § has been
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Fig. 4. The model used for the numerical analysis of a shielded three- .

line microstrip coupler.

evaluated by examining the number of iterations which were
necessary for the convergence of the solution and it has
been found that §,,, = 1.85. The accuracy of the program
has been checked by eliminating one of the three lines and
comparing the obtained results with those by Bryant and
Weiss [15] for a two-line coupler; the values of mode
impedances obtained by our program were never different
by more than 2 percent from those of Bryant.

The evaluation of the mode impedances can be done by
using (V.1) and (IL.4)-(IL.6). Such a calculation  does,
however, need the use of a computer because of the numerous
algebraic equations resuiting from (V.1). A less complicated
solution can be obtained by substituting the mode-
capacitance values of (IL.19)-(IL.21) into the following
formula:

Z, = — 1 V.2)
c\/Cx,aier,diel

where Z, (x = oe,ee,00) are the mode impedances, ¢ is
the free-space velocity and C, 4¢;,Cx i are the mode
capacitances in the presence of a dielectric substrate
(k > 1) and without it (k = 1), respectively. The effective
dielectric constant kg ,, the velocity v,, and the normalized
wavelength A./1, of the modes propagating in microstrip
three-conductor systems are given by

Jc_ S S My ¥
Cegier v ket x € do
where ¢ and A, are the free-space veldcity and wavelength,
respectively.

(v.3)

VI. MoODE-IMPEDANCE CHARTS AND SYNTHESIS
OF A THREE-LiNg COUPLER

The analyzed shiclded microstrip coupler has been
considered as having three lines of equal width w and
separation s. The height of the dielectric alumina substrate

(k = 9.8) will in the following be symbolized by 4. Using

the developed program for the three-line coupler, the
mode impedances Z,,, Z,., and Z,, have been computed
for various w/h and s/h ratios. Most of the results have
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Fig. 5. The dependence of the mode impedances Z,, and Z,, on the
w/h and s/h ratio for a three-line microstrip coupler (k = 9.8,
t/h = 0), where w, s, and ¢ are the width, separation, and thickness
of the lines, and # is the substrate thickness.

been obtained for infinitely thin microstrip lines, but an
investigation of the finite thickness effect has also been
undertaken.

Figs. 5 and 6 show the mode-impedance dependence on
the geometry, w/h and s/h, of the coupler; for applications
where a more accurate design is needed, the results have
also been tabulated® together with the mode capacitances
C,air and C, 4501, (x = o0e,ee,00) for the case of air only
(k = 1) and for the case of an air-dielectric interface
(k = 9.8), respectively. The effective dielectric constant
k.¢¢ . and the mode phase velocity v, can also be found in
these tables.

Fig. 7 shows the reduction of the mode impedances due
to the finite thickness ¢ of the microstrip lines. The maximum
change of impedance is of the order of 8 Q for a ratio t/h =
0.1. Since in most microwave applications the ¢/ ratio is
usually not more than 0.01, the thickness effect has been
considered as being very small and has therefore not been
explored extensively.

1 Within the space provided by a paper, it is not possible to include
these tables here. However, they can be obtained from the authors on
request.
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The effective wavelength A, for each of the three possible
modes can be found from a knowledge of the effective
dielectric constant for a particular coupler geometry. In
practice, the length of the coupling region of a quarter-
wavelength coupler can be evaluated using the following
formula:

l = %}' = %: 100122108]1/3 (VI']')

where the A,, (x = oo,ee,0e) correspond to the wavelengths
of each of the modes. »

It is interesting to note that for a given w/h ratio the
phase velocity is generally increased by decreasing the s/A
value, but the overall change is larger in the case of the oe
and ee modes than for the oo one.

The synthesis procedure of a three-line coupler can in
conclusion be summarized as follows.

1) Determination of the desired degree of coupling and
terminating impedance Z, = Z,, and calculation of the
necessary mode impedances Z,, and Z,, by solving (IV.21)
and (IV.23).

2) Evaluation of the required coupler geometry from
Figs. 5 and 6.

3) Calculation of the length of the coupling region by
evaluating the effective wavelengths for each mode and

using (VLI1).

VII. EXPERIMENT: FABRICATION AND TEST
OF A THREE-LINE COUPLER

A three-line coupler has been manufactured and tested in
order to verify the theory presented in the previous sections
of the paper. The terminating impedance of all ports was
50 © and the coupling coefficient from a side port to the
main center line has been chosen to be 10 dB. These require-
ments result in the following combination of mode im-
pedances for an alumina substrate of k = 9.8:Z,, = 78.4Q
and Z,, = 30.0 Q. The necessary geometrical configuration
should thus be w/a = 0.68 and s/4 = 0.3; this requires
for a 635-um-thick substrate a separation of the lines by
190.5 um. By evaluating the effective dielectric constant for
each mode and from there the corresponding effective
wavelengths, the length of the coupling region could be
determined as 7.69 mm for a quarter-wavelength coupler
with a midband frequency at 4 GHz. A special brass mount’
was constructed and a carefully designed coaxial-to-micro-
strip transition used throughout the experiments. The input
reflection coefficient could be considerably improved by
gradually transforming the cylindrical inner conductor of
the OSM-connector at the transition side into a triangular
shape and by avoiding any gap between the ground plane
of the alumina substrate and-that of the OSM-connector.
After evaporation of a 200-A Cr layer and a 1000-A Au
layer and the use of the floatoff method with Shipley
photoresist, conventional gold-plating techniques were
used for the fabrication of the three-line coupler on alumina
substrates. The final thickness of the Au line was 5 um.
The substrate thickness was 635 um showing negligibly
small surface variations. The lines deposited on the sub-
strates by the floatoff method have sharp edges since the
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Fig. 8. Typical frequency dependence of the VSWR for a side input

port of an experimental three-line coupler.
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Fig. 9. Typical frequency dependence of the coupling from a side
port to the center line of a 10-dB three-line coupler.

quality of this fabrication process is primarily limited by the
optical properties of the photoresist rather than a chemical
etching of large gold surfaces.

The VSWR and the coupling from one side port to the
adjacent port of the main line have been measured using
an HP network analyzer, and the results are shown in
Figs. 8 and 9 for the frequency range of 1.8-6.5 GHz.
It can be seen that the VSWR changes in the frequency
range of 3-5 GHz from a minimum value of 1.03 to a
maximum one of 1.18. This result has been considered to
be in good agreement with the intended matching of the
input ports. The average coupling coefficient for the afore-
mentioned frequency band is typically of the order of 10.8
dB. There is therefore a 0.8-dB deviation from the theoretic-
ally predicted coupling value which is mainly due to the
assumptions of our theory such as is given by (IV.1), but
also due to other effects as, for example, the existence of
losses in the structure.

The isolation characteristics of the side ‘ports have also
been examined and found to vary between 21 and 26 dB
in the operating frequency range of 3-5 GHz. This was
again in good agreement with the theoretical predictions
of good isolation.

Finally, a photograph of the constructed 10-dB three-line
coupler is given in Fig. 10.
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Fig. 10. Photograph of an experimental 10-dB three-line coupler.

VIII. CONCLUSIONS

The fundamental modes of propagation have been
derived for an array of three parallel conductors. The
properties of such a network have been examined by the
use of only three mode impedances which are the same for
both center and side conductors.

It has been shown both theoretically and experimentally
that it is possible to realize three-line couplers having:

1) perfectly matched input side ports;

2) a finite controllable value of coupling between any
side port-and the center line;

3) perfect isolation between any two side ports at either
end of the lines. '

These couplers are particularly useful in communications
applications where it is often necessary to combine two
signals into one without any interaction of the signal
sources. Although there is a disagreement of 0.8 dB between
the predicted and the experimentally evaluated value of
coupling coefficients for a 10-dB coupler, the developed
theory can be considered satisfactory for most microwave
applications.
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General TE..-Mode Waveguide Bandpass Filters

ALI E. ATIA, MEMBER, IEEE, AND ALBERT E. WILLIAMS, MEMBER, IEEE

Abstract—A new structure for high-Q TE,; ;-mode circular waveguide
cavities is introduced and shown to realize the most general bandpass-
filter transfer functions. Methods of improving the mode purity and
suppressing the degenerate TM;;, mode are presented. Several ex-
perimental narrow-bandpass filters having finite attenuation poles have
been constructed; their measured responses show excellent agreement
with theory. Average realizable unloaded (Q’s of 20000 and 16 000
have been achieved at 8 and 12 GHz, respectively.

INTRODUCTION

ANY modern microwave communications-system

applications require exacting filter specifications
in terms of selectivity, midband insertion loss, gain slope,
and group delay. Synthesis methods have been developed
for the realization of general transfer functions in multiple-
coupled cavities [1]. Successful implementations of these
synthesis techniques have been demonstrated by construct-
ing narrow-bandpass waveguide filters in dual-mode circular
cavities [2], dual-mode square cavities, and single-mode
rectangular cavities [3] excited in dual TE,,,, dual TE,,,,
and single TE,,; modes, respectively.

The gain slope and midband insertion losses of bandpass
filters are closely related to the practically realizable
unloaded Q’s of the cavities and the fractional bandwidth
of the filters. At high frequencies (centimeter through
millimeter wave), the achievable unloaded Q of waveguide
cavities excited in the fundamental modes can be a limiting
factor in the realization of highly selective narrow-bandpass
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filters having small gain slopes and in-band insertion losses.
Furthermore, in high-power multiplexing applications it is
important to minimize the filter losses. Typically, silver-
plated waveguide-cavity filters excited in the fundamental
mode can be realized with average unloaded Q’s of about
10000 at S band. At higher frequencies, lower unloaded

Q’s are realized due to the 1 /\/ f dependence. For example,
0’s ranging from 7000 to 5500 are achieved at X band.

An obvious way of obtaining a higher unloaded Q is to
employ a higher order cavity mode, although care must be
taken to ensure satisfactory cavity tuning control and
suppression of adjacent modes. One mode which has been
successfully employed is the circular TE,; mode. Known
realizations of this mode are cascaded (direct-coupled)
structures [4] which limit the class of transfer functions
that can be realized to all-pole functions (e.g., Chebychev
and Butterworth). More general characteristics, e.g.,
functions possessing transmission zeros at finite frequencies
and nonminimum phase functions, cannot be realized in
these simple direct-coupled structures.

This paper demonstrates the realization of the most
general filter transfer functions in waveguide structures
excited in the high-Q TE,;; mode. It is well known that
this can only be achieved if couplings among certain non-
cascaded cavities are realized with arbitrary signs. A new
structure satisfying the canonical form of multiple-coupled
cavity realization [ 1] is introduced.

One of the difficulties encountered in the utilization of
the TE,, circular waveguide-cavity mode for filter realiza-
tion is the presence of the degenerate TM;; mode. Methods
of splitting the degeneracy of the two modes are presented,



