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The Design and Performance of Three-Line
Microstrip Couplers

DIMITRIOS PAVLIDIS, STUDENT MEMBER, IEEE, AND HANS L. HARTNAGEL, SENIOR MEMBER, lEEE

i4bsftwcf-An analysis is presented of microstrip-coupler circuits

consisting of three parallel lines. The analysis is based on the existence

of three mode impedances. Design equations describing the performance
of this type of coupler are derived and allow the prediction of its matching
and transmission properties. Numerical results using fmitedifference
methods are presented for a three-line microstrip coupler made on an

alumina substrate (k = 9.8). Experimental results for a 10-dB tbree-
line coupler with a center frequency of 4 GHz show that its performance

can be reasonably well predicted by the developed theory.

I. INTRODUCTION

c

OMMUNICATION SYSTEMS and other micro-

wave applications often require the use of special

coupler structures such as a three-line symmetrical coupler

for combining two independent signals on to a common

third line.

The properties of multiconductor networks have been

examined extensively by many authors [1]–[6]. First

results [1], [2] were limited primarily to the design of

microwave interdigital filters. The geometry of these net-

works allows one to neglect the coupling capacitances

beyond the nearest neighbor conductors. In this way wave

propagation along the lines can be described by the use

of two orthogonal TEM modes, namely the even and odd

mode [1]–[3]. A more complete analysis taking into

consideration the effect of the fringing capacitances beyond

the nearest neighbors of an array of three conductors also

exists [4], [5]. Yamamoto et al. [5] introduced three modes

of propagation and five characteristic mode impedances,

three of which are independent. In their theory the mode

impedances of the center conductors are related to those of

the side conductors by a special condition for the capacitance

or potential coefficients of the structure. The theory

developed in this paper makes no use of Yamamoto’s

condition, which was possible by making a suitable choice

of the modes of propagation. These modes of propagation

were excited in the conductors by using voltage and current

sources whose amplitudes were tailored to the particular

network geometry.

The fundamental modes of propagation for a network

having three parallel conductors are derived in Section II

of this paper. The coupling beyond nearest neighbors is

included and the wave propagation is described by only

three mode impedances. Section III describes the impedance-

matrix derivations for an array of three lines of finite
length excited by the method described in Section II. The
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relations predicting the performance of such al network

when used as a coupler are derived in Section IV. The

method used for the calculation of the mode impedances

is outlined in Section V. Mode-impedance data are presented

in Section VI and are valid for couplers made on alumina

substrates of a relative dielectric constant k = 9.8. Finally,

Section VII describes experimental results obtained with a

construction of a three-line coupler which is designed in

accordance with the developed theory. Such a type of

coupler has been successfully used for combining the signals

of two pulsed Gunn oscillators employed in the phase-

shift-keyed (PSK) X-band modulator of [7] and [8].

II. DERIVATION OF THE FUNDAMENTAL

MODES OF PROPAGATION

Every TEM propagation along a set of three parallel

lines having a fourth line as a common earth can be des-

cribed by the use of three fundamental eigenvectors which

are orthogonal to each other [9]. The assumption of a

TEM mode had to be made for the following derivations

because of the resulting relatively simple approach to the

problem. No pure TEM transmission can, of course, exist

in a microstrip circuit, like the one which will be explored

in the later parts of this paper, because of its nonhomo-

geneous nature.

In order to derive the fundamental modes of propagation,

it is necessary to assume three infinite long parallel lines.

If wave propagation takes place in they direction, then we

can write, according to conventional transmission-line

theory,

d[V]
— = -[2][1].

dy
(11.1)

In the previous equation the elements Vi and li$ (i = 1,2,3)

of the matrices [V] and [I] denote the voltage and current

at the port i of the network and [z] is the square 3 x 5

matrix of the impedance coefficients zijj (i,j = 1,2,3). From

symmetry considerations we have, of course,

L::a ‘V]=EI“’’=El[z] = zf~ z~~

(11.2)

The eigenvalue equation for the impedance matrice [z] is

([z] – 2[E])[x] = O (11.3)

where [x] is a matrix with columns denoting the eigen-

vectors of [z], [E] is the unity matrix, and [2] = l[E]

is a matrix whose diagonal elements are the eigenvalues of
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[z]. Equation (11.3) results in

has the following solutions:

1~ =z~~ – z~~
,—
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a third-order equation which

(11.4)

where Va, Vb, and V= are the voltages exciting the lines,

a, b, and c, respectively. In accordance with the afore-

mentioned notation of the voltage modes, the eigenvalues

(11.4)-(11.6) will in the following be referred to as mode

impedances 2.., 2==, and ZOO,respectively.

It will now be shown for a network which is excited

according to (II. 15)-(11.17) that the characteristic impedance

of the center conductor will always be the same as that of

the side conductor; this implies that it is not necessary

to impose any condition for the capacitance coefficients

of the network (as used, for example, by [5]). The OE

mode of our theory is the same as the C mode of [5], but

the EE and 00 modes are different by the factors I/p and

p/2, respectively. The parameter p is an internal property

of each particular network. As v changes, with the geometry

of the network, the value of the characteristic impedance of

the center conductor is automatically adjusted to that

of the side conductors. By using the same method as [5]

we obtain the following expressions for the static capac-

itances to ground per unit length of each conductor:

Ol?-mode C..e = C.O, = Cll – C13 (11.19)

(11.5)

and

(11,6)

The eigenvector x. corresponding to the eigenvalue Al

can be easily calculated by introducing (11,4) into (11,3)

[1[1
–1 xa~

x~=k o = xa~

1 xa3

(11.7)

where k is some arbitrary value of X.l.

A more laborious calculation gives for the remaining two

eigenvectors

[m
1 Xbt

Xb=k~l = xb’

1 xbs

(11.8)

and

[1[1
1 xc~

xc =k q2 = X=2

1 XC3

(11.20)

+ C13

(11.21)

coefficients of

(11.9)

2
00-mode C.OO= CCOO= Cll – - Clz

P
where

(11.10)

where cij, (i,j = 1,2,3) are the capacitance

the network. In order to have equal mode impedances for

the center and side conductors, we need

(11.1 1)

K = Zll – 222 L = [(211 – Z22 + Z13)2 + 8Z122]1’2

M = 3Z13
2Z122

N=z13+— (11.12)
213

Caee = cb~e = C.ee

Caoo= C,oo = Ccoo (11.22)

or
and k is the arbhrary value of xb~ and Xcl.

It can be easily shown that the following simple relation

holds between VI and q2 for any value of zij:

~= -(%1 – C22 + CJ - J(cll - C22 + C13)2 + 8C122

2c~’

(11.22a)fl~q* = –2. (11.13)

The condition expressed by (11.22a) is, in fact, always true

because it is equivalent to (II. 18), which is the fundamental

parameter employed for the definition of the voltage modes.

The equivalence of (11.22a) and (11.18) has been checked
by numerical substitutions of the results obtained in

Section VI; the values of ,u calculated in this way were in

both cases the same.

As (11.22a) is always valid, it is a matter of algebraic

calculations to show in the same way as [5] that the follow-

ing conditions apply for a network excited according to

(11-15)-(11.17):

Equation (II. 13) shows that by assigning a value p to VI,

it is always possible to express q2 as

tl~ = –2/p. (11.14)

From the eigenvectors x., xb, and xc we can now derive

the following conditions for each of the three possible

voltage modes:

OE-mode V. = – V=, V~ = O (11.15)

EE-mode V. = V= = ~ (11.16)
P

OE-mode Q. = Q=, Qb = O (11.23)
p Vb00-mode V. = V= = – -
2

(11.17)
EE-mode Q. = QC = Q,/p (11.24)

–K+L+Mz12
p=

K+ L+N~
(11.18) 00-mode Q. = Q= = – ~ Q, (11.25)
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OE - mode

EE - mode

00 - mode

Fig. 1. Sketch of the electric-field lines for the fundamental modes
existing in a threeAine microstrip coupler.

where Q denotes the charge per unit length of each

conductor.

Fig. 1 is a sketch of the electric-field lines for the three

fundamental modes existing in an array of three parallel

lines excited by equal magnitude voltages but having the

phase relation implied by (II. 15)-(11.17).

III. IMPEDANCE MATRIX

The fundamental modes derived in Section II can be used

for the evaluation of the impedance matrix of a three-line

coupler. The method of calculation is based on the analysis

presented in the classic paper by Jones and Bolljahn [10].

The [Z] matrix is obviously expected to be a square

matrix of order six since it refers to a, coupler with three

lines of length 1, which is a six-port network. Each fun-

damental mode is excited by ideal current generators

placed at the ends of the coupled transmission lines and

having a certain phase and magnitude relation between

them (Fig. 2). Under the aforementioned conditions, the

electromagnetic coupling occurs over a finite length 1 and

the total terminal voltages and currents can be derived by

superimposing the corresponding values of voltage and

current for each of the OE, EE, and 00 types of excitation.

The current generators of Fig. 2 have the following values:

i;ee = pile= i;ee = pi2ee

2. 2.
i;OO = – ZIOO i~OO= - ZZOO. (IIL1)

P P

The voltages U produced by the employed current sources

can now be easily expressed as a function of the position z

along the line and of the corresponding mode impedance

and current amplitude; in view of brevity the values of 0

are presented for the OE mode only

7.=jfJe= –7JfJe = –jZOeilOe
Cos k(l – z)

sin kl

~y’e =
COSkz

–U&. = –jZoei20. —
sin kl

Fig. 2. Excitation of the fundamental modes of a three-line micro-
strip coupler by suitable current generators placed at its ports.

The total currents 1~, (m = 1,” cc,6) at each port can be

expressed as a superposition of the mode currents it~,

(i = 1,2, and j = oe,ee,oo) resulting in six equations, the

solution of which gives the values of ii~ in terms of Z~.

Similarly, by superimposing the mode voltages 7-J and

introducing the iij(Z~) values into (111.2) as well as into the

corresponding equations which hold for the other two

modes, the total voltages V~ can be expressed in the form

Vm = ~:. ~ Zm.I..

The coefficients Z~. can thus be evaluated from the mode

impedances ZO=, ZOO, and 2,, and the electrical lengths

0 = kl. The elements of the impedance matrix [Z] are

given in Table I. A different phase velocity has been assumed

for each of the three possible modes, and therefore the [Z]

matrix contains three different electrical lengths O.,, O.e,

and 800.

IV. THEORETICAL PREDICTION OF THE PERFORMANCE

OF A THREE-LINE COUPLER

An attempt is made here to express the properties of a

three-line coupler, such as coupling coefficients, isolation,

ahd matching in terms of the mode impedances Zo., Z,,,

and ZOO.This will enable the designer to predict theoretically

the desired performance of the coupler for each particular

application.

The major difficulty in the analysis here is the expression

of p in (IL 18) in terms of the mode impedances only, It

can be seen from (II. 18) that the value of p depends on the

geometrical configuration of the employed coupler.’ Every
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analysis will therefore lose its generality by assuming some

arbitrary p, and thus simplifying the equations for the

orthogonal eigenvectors (11.7)–(11.9). An analytical ex-

pression of p in the form of p = ,U(ZOC,Z.,,ZOO) could,

however, not be derived because it is mathematically

impossible to express all the ZI ~,Z22,ZI Z,zl ~ impedance

coefficients of (11.4)–(11.6) in terms of 2.,, 2=., and ZOO

only. One of the possible approaches to the problem is to

express pas p(ZO.,Z,.,ZOO,zl 2), and then find the set of mode

impedances which satisfies the desired performance for

some arbitrary value of Z12; the design procedure becomes,

however, in such a case very complicated, because there is

a need for some optimization routine which can calculate

a realistic set of values for 2.., Z,,, ZOO,and Z12, and reject

all the nonrealistic solutions.

Another alternative is, of course, to reduce the zi~

coefficients by one, by making some reasonable assumption

such as

zl~ = ZZ2. (IV.1)

The previous assumption can also be written in the

following form:

c~~c~~ c~fc~~
C22 = c~~ — +

.c~~ + C12 + c~~ c~~ + C12 + c~~

(IV.la)

where the cij are the capacitance coefficients introduced in

Section II. By neglecting the coupling beyond the nearest

neighbor conductor (cl ~ = O), (IV. la) reduces to the

approximation expressed by [3, eq. (7)].

The impedance coefficients Zij can now be written as

)222 = +(zee + ’00 + ‘oe (IV.2)

+(2.. + zoo - 220.) (IV.3)

+ [2(zee - 200)2 - 20=
418

. (Zo= - 2== - zoo) - 2..200]. (IV.4)

It can be easily shown that p is now given by

‘o

Zo

*.

-- 20
/+77 /+’7

OE - mode

#?!J7 -
2+/12 EE - mode

An

20

2+/1 2

(a)

Lo
I 6

Vf
1

Z(J

7+ /7?7?

Zo Z.
/7+7

3 4

*.

‘o
z~

(b)

Fig. 3. (a) Sets of voltage sources required to excite the fundamental
modes of a three-line coupler. (b) Driving of a three-line coupler
by a voltage source.

~ = Jj [WL – -%.)2– -%(-z= – z-e – 200) – 2..200] 1’2
22== – Zoe – zoo

(IV.5)

The validity of the assumption (IV. 1) has been checked

using the results of the numerical analysis which will be

described in Section V of this paper. The values of z,, and
Z22 have been compared for a large number of possible

geometrical configurations of the coupler and their difference

never exceeded 2.5 percent; similarly, the value of # given

by (IV.5) is different from the correct value by not more than

4.6 percent.

For communication applications it is often required [7],

[8] to have a three-line coupler with the following

characteristics:

1) a perfectly matched input side port;

2) perfect isolation (decoupling) of the input side port

from the side port which is at the same end of the

lines [for example, ports 1 and 3 of Fig. 3(b)].

The implications of the previous two conditions will now

be examined. The scattering matrix of a symmetric six-port

network consisting of three parallel conductors [Fig. 3(b)]
can be written as

where

[1
~PY[S’]=pepypcl

and

[1
6&J

[s’] =&r/&.

JEb

(IV.6)

(IV.7)
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TABLE 1
THS ELEMENTS OF THE IMPEDANCE MATRIX OF A THREE-LINE COUPLER

[

z z P4~oo
211 = ’32 = ’44 = ’66 = -i

~cotQ+~
oe

cOt Q+—
ee

cot Q

2+p ‘ 2(2+v~)
00

1

[

llzee pzoo

’12 = ’21 = ’23 = ‘,;2 = ’45 = ’54. = ’56 = ‘.55 = ‘i —c0t9-——.— cot 900
~+p~ ee ~+u2

1

[

z Zee p%oo

’13 = ’31 = ’46 = ’64 = ‘j --&c Ota+—
oe

cOt G!+- Co’t Q

2+p’2 ee 12 (2+p-) 00

[

z
1

z ,L~zoo

’14 = ’41
=z36=z63=-,j .9 :+-* +— .

ssnQ

1

ee 2(2+L12) ‘~~n-oo-1

[

llzee ~ pzoo *

’15 = ’51 = ’24 = ’42 = ’26 ‘ ’62 = ’35 “ ’57 = ‘i ‘-
-—

~+w2 smQee
2-!. p

2 sxnQoo 1

[

z

’16
Oc! l+zeel P2Z00

.z61. z3A=z A3=-j ~- +—
1.

9 mn~ ----v-
oe 2+p 2(2+IL2) ~’-n~oo 1

[

Pzzee 2Z
z

22 = ’55 = -~ —
Cot Q++

1

cot 000

Zipz
ee

2+ p

[

pzzee ~ 2200

’25 = ’52 = ‘j
1

-~ +—
?+ p 2 sinQoo

ee 1

By applying the unitary property of [s], it is possible to

show that if a = y = O and f? # O, then the assumption

of d = & = O leads to the obvious contradiction of ~ = O,

This shows that a coupler satisfying the previously men-

tioned conditions 1) and 2) can never be perfectly directive.

A finite degree of coupling will always exist between the

input side port and 1) the center port adjacent to its terminal

[for example, between ports 1 and 2 of Fig, 3(b)], and 2) all

the other ports [4, 5, and 6 of Fig. 3(b)] of the opposite

side.

The matching and coupling conditions of a three-line

coupler can be derived from the impedance matrix whose

elements are given in Table I. Such a derivation is, however,

very tedious and does not provide any physical insight to

the problem. The method which will be used in this section

is the one which was initially proposed by Jones and Bolljahn

[10] and then extended a decade later by Levy [1 1].

Voltage sources of suitable values as shown in Fig. 3(a)

have been considered as being connected to the ports of a

three-line coupler; their phase and magnitude relation is

such that for each set of sources only one mode can be

excited. Additionally, a superposition of all the modes

results in a configuration where an input signal of amplitude

1 is connected to one of the side ports of the coupler and all

the others are terminated in 20 [Fig. 3(b)]. Each line of the

coupler can be treated for some particular mode excitation

as a two-port network for which the reflection and trans-
mission coefficients are related to its [A.BCD] matrix

through the following equations [11]:

~= A+ B/ZO– CZO– D

A+ B/ZO+CZO+D

T=
2

A + B/ZO + CZO + D“

(IV.8)

(IV.9)

By introducing the values of the elements of the [ABCD]

matrix into (IV.8) and (IV,9), one obtains the reflection

and transmission coefficients of each mode in terms of the

corresponding mode impedances and electrical lengths

1- =’[2-21 ‘inex ‘lvlO’
x

4.

(IV.11)

where ~. = 2 cos 6X + j[(ZX/ZO) + (ZO/ZX)] sin 6X, and

x = oe, ee, 00, Using the superposition principle, the totall

voltages emerging from the ports of the coupler are found

to be

VI = H=o.+ -J- r,. + ‘2 r.. (IV.12)
2+JP ,2(2 + flz)

V2 = * [ree - rool (IV.13)

1
V3 = –*roe + — r=, + ‘2 r..

2+p’ ,2(2 + /42)
(IV.14)

V4 = –~TOe + ~ T.. + ‘2
2+JP 2(2 + p’)

TOO (IV.15)

(IV. 16). A [Tee – Too]
‘5–.2+V2

1
V6 = *TO= + — Tee + ‘2 TOO.

2+/ 2(2 + pz)
(IV.17)

Although the phase velocity is different for each of the three

possible modes, the assumption of equal electrical lengths

(O., = 6== = 600)will be made for the following calculations.
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One of the major requirements of a three-line coupler is to

have matched side ports in the operating frequency band.

Equation (IV. 12) gives for VI = O and for a quarter-wave-

length coupler the matching condition

[1 - m][ZO~Ze~ZO$ - Z06]

+ zo2zoe2[z=e2 – mzooz] + zo4[mzee2 – Z002] = o

(IV.18)

with m = —p2/2.
If the matching condition VI = O is satisfied, then the

coupling coefficient from ports 1–3 [Fig. 3(a)] is

V3 = –roe. (IV.19)

Since in practical applications it is usually required to have a

perfect isolation between two adjacent side ports, (IV.19)

suggests that rOe should in such a case be zero or, in other

words, that the mode impedance ZOe should be equal to the

terminating impedance ZO

z~ = Zoe. (IV.20)

The matching condition (IV. 18) can be simplified under the

condition (IV.20), becoming

[
1 km (Zeez– Zoj)Z02= –
21–m

+J(+J
1

[Zeez – zoo’]’ + 4zee’zoo2 .

(IV.21)

Under the conditions of perfect matching and isolation the

coupling from port 1 to port 2 can be evaluated as

(IV.22)

It can be seen from (IV. 10) and (IV.22) that the maximum

value of r== and thus of V2 occurs for the case of a quarter-

wavelength three-line coupler. Equation (IV.22) can

therefore be written as

~ = 1 Z.ez – Z02
2-

/f Z.,2 + Z02 “
(IV.23)

The coupling coefficients of all the remaining ports are as

follows :

Several methods exist for the computation of the charac.

teristic impedance of single- or multiple-conductor lines-

Yamashita and Mittra [13] have proposed the use of

integral equations calculated with the aid of Green’s

functions. Gupta [12] uses the electrostatic- and magneto-

static-energy integrals in order to calculate a lower and an

upper bound of the impedance; the resulting impedance

values are therefore very accurate because they are based on

the average value of the aforementioned bounds. Itakura

et al. [4] used a conformal mapping technique in order to

derive exact solutions for a structure consisting of three

parallel conductors in a homogeneous medium. Conformal

mapping techniques give, however, only approximate

solutions for inhomogeneous media. The method adopted

for our derivations was a finite-difference numerical

solution of Laplace’s equation Vzv = O in a two-dimen-

sional space and the use of Gauss law for the calculations

thereafter. The wave propagation along the three lines

has been assumed to be a pure TEM one and the lines were

enclosed in a shielding box.

It is known that the impedance matrix of a coupler can

be written as

[Z]2 = + [C~i~]-l[C~i.,..*fi.]-l (V.1)

where [cd,~l~~&,~] and [c,i,] are the static capacitance

matrices of the structure with and without an air–dielectric

interface. The evaluation of the previously given capacitance

matrices allows the calculation of the elements zij, (i,j =

1,2,3) of the impedance matrix and, consequently, a

knowledge of the mode impedances ZO,, Z,,, and ZOO.

The model which has been used for the numerical analysis

is shown in Fig. 4; two grids, a main one and a finer one in

the vicinity of the lines, have been used because of accuracy

considerations. The potential at each of the nodes is cal-

culated using the five-point formula which is known to

give an error of the order of h2 (where h is the distance

between two successive nodes). A better accuracy is, of

course, expected in theory by the use of the nine-point

formula, but in practice [14] the five-point formula seems

superior because of the existing reentrant corners where a

singularity of the electric field exists.

The execution of the developed finite-difference program

is continued until an accuracy of 10 – 4 is achieved. Then the

[
v4=–j –!+ ~e 2zee(zoe2 + 2002) + pzzoo(zoe’ + Z,ez)z

2 2+/.t2 (z=e’ + zoe2)(zoo2 + Zoeq — 1

2
v5=–j —

Zoozee + Zoe’
‘oe(z.e - zoo)

2 + pz (zee2+ Z0.2)(Z002+ -%.2)

[

z 2zee(zoe’ + Z002) + JPZOO(Z0,2+ Z..2)
v6=–j ;++

P 1(ae2 + .Z,2)(Z002+ Z02) “

(IV.24)

(IV.25)

(IV.26)

V. THE MODEL USED FOR THE NUMERICAL ANALYSIS charge associated with each conductor is evaluated by
OF THE THREE-LINE COUPLER integrating around it. Because of the boundary between the

In this part of the paper, the dependence of the charac- main and the fine grid of Fig. 4, it was necessary to derive

teristic mode impedances on the geometry of the coupler some special finite-difference formulas for certain nodes of

will be derived by the aid of a digital computer. the grid. The optimum over relaxation factor /3 has been
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MM

‘4

\

X2

xl

‘L (so)

j

Fig. 4.

Main Grid

Fine Grid I

t
1 1 I 1 1 I

,,

The model used for the numerical analysis of a shielded three-
Iine microstrip coupler.

evaluated by examining the number of iterations which were

necessary for the convergence of the solution and it has

been found that /30P, = 1.85. The accuracy of the program

has been checked by eliminating one of the three lines and

comparing the obtained results with those by Bryant and

Weiss [15] for a two-line coupler; the values of mode

impedances obtained by our program were never different

by more than 2 percent from those of Bryant.

The evaluation of the mode impedances can be done by

using (V. 1) and (11.4)–(11.6). Such a calculation does,

however, need the use of a computer because of the numerous

algebraic equations resulting from (V. 1). A less complicated

solution can be obtained by substituting the mode-

capacitance values of (II. 19)–(11.21) into the following

formula:

‘x= cdc.,trc.,di.~(V.2)

where ZX, (x = oe,ee,oo) are the mode impedances, c is

the free-space velocity and c~,diel,c~,~,~ are the mode

capacitances in the presence of a dielectric substrate

(k > 1) and without it (k = 1), respectively. The effective

dielectric constant kcff,X, the velocity VX,and the normalized

wavelength lX/20 of the modes propagating in microstrip

three-conductor systems are given by

J

C~,~i~_ 1 _~=&

Cx,diel 4k=~~,X c ‘O

(V.3)

where c and 10 are the free-space velocity and wavelength,

respectively.

VI. MODE-IMPEDANCE CHARTS AND SYNTHESIS

OF A THREE-LINE COUPLER

The analyzed shielded microstrip coupler has been

considered as having three lines of equal width w and

separation s. The height of the dielectric alumina substrate

(k = 9.8) will in the following be symbolized by h. Using,

the developed program for the three-line coupler, the

mode impedances ZO=, Z,e, and ZOOhave been computed

for various w/h and s/h ratios. Most of the results have

I I
1 , ,
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F1:

I .0
0,9
rj:#

:3
0.3

0.2

~

0.2 0.4 0.6 0.6 1.0
w/h-

Fig. 5. The dependence of the mode impedances Z.. and Z.. on the
w/h and s/h ratio for a three-line microstrip coupler (k = 9.8,
t/h = O), where w,s, and tare the width, separation, and tilckness
of the lines, and h is the substrate thickness.

been obtained for infinitely thin microstrip lines, but an

investigation of the finite thickness effect has also been

undertaken.

Figs. 5 and 6 show the mode-impedance dependence orI

the geometry, w/h and s/h, of the coupler; for applications

where a more accurate design is needed, the results have

also been tabulated together with the mode capacitances

x,air and Cx,dieh (X = oe,ee,oo) for the case of air only

& = 1) and for the case of an air-dielectric interface

(k = 9.8), respectively. The effective dielectric constant

k.ff,X and the mode phase velocity OXcan also be found in

these tables.

Fig. 7 shows the reduction of the mode impedances due

to the finite thickness t of the microstrip lines. The maximum

change of impedance is of the order of 8 !2 for a ratio tlh =
0.1. Since in most microwave applications the t/h ratio is

usually not more than 0,01, the thickness effect has been

considered as being very small and has therefore not been

explored extensively. .

1Within the spaceprovided by a paper, it is not possible to include
thesetables here. However, they can be obtained from the authors on
request.
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Fig. 6. The dependence of the mode impedance Zoe on the w/h
and s/h ratio for a three-line microstrip coupler (k = 9.8, t/h == O)
where w, s, and t are the width, separation, and tlickness of the
lines, and h is the substrate thickness.
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thickness

The effective wavelength AXfor each of the three possible

modes can be found from a knowledge of the effective

dielectric constant for a particular coupler geometry. In

practice, the length of the coupling region of a quarter-

wavelength coupler can be” evaluated using the following

formula:

1 = +J = +[AOOA.=AO.]1/3 (VI.1)

where the A., (x = oo,ee,oe) correspond to the wavelengths

of each of the modes.

It is interesting to note that for a given w/h ratio the

phase velocity is generally increased by decreasing the s/h

value, but the overall change is larger in the case of the oe

and ee modes than for the 00 one.

The synthesis procedure of a three-line coupler can in

conclusion be summarized as follows.

1) Determination of the desired degree of coupling and

terminating impedance 20 = 20= and calculation of the

necessary mode impedances 2.. and ZOOby solving (IV.21)

and (IV.23).

2) Evaluation of the

Figs. 5 and 6.

3) Calculation of the

evaluating the effective

using (VI. 1).

required coupler geometry from

length of the coupling region by

wavelengths for each mode and

VII. EXPERIMENT: FABRICATION AND TEST

OF A THREE-LINE COUPLER

A three-line coupler has been manufactured and tested in

order to verify the theory presented in the previous sections

of the paper. The terminating impedance of all ports was

50$2 and the coupling coefficient from a side port to the

main center line has been chosen to be 10 dB. These require-

ments result in the following combination of mode im-

pedances for an alumina substrate of k = 9.8: Z.g = 78.4 !2

and ZOO= 30.0 Q. The necessary geometrical configuration

should thus be w/h = 0.68 and s/h = 0.3; this requires

for a 635-pm-thick substrate a separation of the lines by

190.5 pm. By evaluating the effective dielectric constant for

each mode and from there the corresponding effective

wavelengths, the length of the coupling region could be

determined as 7.69 mm for a quarter-wavelength coupler

with a midband frequency at 4 GHz. A special brass mount’

was constructed and a carefully designed coaxial-to-micro-

strip transition used throughout the experiments, The input
reflection coefficient could be considerably improved by

gradually transforming the cylindrical inner conductor of

the OSM-connector at the transition side into a triangular

shape and by avoiding any gap between the ground plane

of the alumina substrate and-that of the OSM-connector.

After evaporation of a 200-~ Cr layer and a 1000-~ Au

layer and the use of the floatoff method with Shipley

photoresist, conventional gold-plating techniques were

used for the fabrication of the three-line coupler on alumina

substrates. The final thickness of the Au line was 5 pm.

The substrate thickness was 635 pm showing negligibly

small surface variations. The lines deposited on the sub-

strates by the floatoff method have sharp edges since the
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Fig. 10. Photograph of an experimental 10-dB three-line coupler.

Fig. 8. Typical frequency dependence of the VSWR for a side input
port of an experimental three-line coupler.
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Fig. 9. Typical frequency dependence of the coupling from a side
port to the center line of a 10-dB three-line coupler.

quality of this fabrication process is primarily limited by the

optical properties of the photoresist rather than a chemical

etching of large gold surfaces.

The VSWR and the coupling from one side port to the

adjacent port of the main line have been measured using

an HP networlc analyzer, and the results are shown in

Figs. 8 and 9 for the frequency range of 1.8-6.5 GHz.

It can be seen that the VSWR changes in the frequency

range of 3–5 GHz from a minimum value of 1.03 to a

maximum one of 1.18. This result has been considered to

be in good agreement with the intended matching of the

input ports. The average coupling coefficient for the afore-

mentioned frequency band is typically of the order of 10.8

dB. There is therefore a 0.8-dB deviation from the theoretic-

ally predicted coupling value which is mainly due to the

assumptions of our theory such as is given by (IV. 1), but

also due to other effects as, for example, the existence of

losses in the structure.

The isolation characteristics of the side ports have also

been examined and found to vary between 21 and 26 dB

in the operating frequency range of 3–5 GHz. This was

again in good agreement with the theoretical predictions

of good isolation.

Finally, a photograph of the constructed 10-dB three-line

coupler is given in Fig. 10.

VIII. CONCLUSIONS

The fundamental modes of propagation have been

derived for an array of three parallel conductors. The

properties of such a network have been examined by the

use of only three mode impedances which are the same for

both center and side conductors.

It has been shown both theoretically and experimentally

that it is possible to realize three-line couplers having:

1) perfectly matched input side ports;

2) a finite controllable value of coupling between any

side port and the center line;

3) perfect isolation between any two side ports at either

end of the lines.

These couplers are particularly useful in communications

applications where it is often necessary to combine two

signals into one without any interaction of the signal

sources. Although there is a disagreement of 0.8 dB between

the predicted and the experimentally evaluated. value of

coupling coefficients for a 10-dB coupler, the developed

theory can be considered satisfactory for most microwave

applications.
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General TE,,,-Mode Waveguide Bandpass Filters
ALI E. ATIA, MEMBER, IEEE, AND ALBERT E. WILLIAMS, MEMBER, IEEE

Abstracf—A new structure for high-Q TEO, ,-mode circular waveguide
cavities is introduced and shown to realize the most general bandpass-
filter transfer functions. Methods of improving the mode purity and
suppressing the degenerate TM, I I mode are presented. Several ex-

perimental narrow-bandpass filters having finite attenuation poles have

been constructed; their measured responses show excellent agreement

with theory. Average realizable unloaded Q’s of 20000 and 16000

have been achieved at 8 and 12 GHz, respectively.

INTRODUCTION

M ANY modern microwave communications-system

applications require exacting filter specifications

in terms of selectivity, midband insertion loss, gain slope,

and group delay. Synthesis methods have been developed

for the realization of general transfer functions in multiple-

coupled cavities [1]. Successful implementations of these

synthesis techniques have been demonstrated by construct-

ing narrow-bandpass waveguide filters in dual-mode circular

cavities [2], dual-mode square cavities, and single-mode

rectangular cavities [3] excited in dual TEI ~~, dual TEI 01,

and single TEI o~ modes, respectively
The gain slope and midband insertion losses of bandpass

filters are closely related to the practically realizable

unloaded Q’s of the cavities and the fractional bandwidth

of the filters. At high frequencies (centimeter through

millimeter wave), the achievable unloaded Q of waveguide

cavities excited in the fundamental modes can be a limiting

factor in the realization of highly selective narrow-bandpass

Manuscript received January 15, 1976; revised April 5, 1976. This
paper is based upon work performed in COMSAT Laboratories
under the sponsorship of the Communications Satellite Corporation.

The authors are with the COMSAT Laboratories, Clarksburg,
MD 20734.

filters having small gain slopes and in-band insertion losses.

Furthermore, in high-power multiplexing applications it is

important to minimize the filter losses. Typically, silver-

plated waveguide-cavity filters excited in the fundamental

mode can be realized with average unloaded Q’s of about

10000 at S band. At higher frequencies, lower unloaded

Q’s are realized due to the l/~~dependence. For example,

Q’s ranging from 7000 to 5500 are achieved at X band.

An obvious way of obtaining a higher unloaded Q is to

employ a higher order cavity mode, although care must be

taken to ensure satisfactory cavity tuning control and

suppression of adjacent modes. One mode which has been

successfully employed is the circular TEO ~~ mode. Known

realizations of this mode are cascaded (direct-coupled)

structures [4] which limit the class of transfer functions

that can be realized to all-pole functions (e.g., Chebychev

and Butterworth). More general characteristics, e.g.,

functions possessing transmission zeros at finite frequencies

and nonminimum phase functions, cannot be realized in

these simple direct-coupled structures.
This paper demonstrates the realization of the most

general filter transfer functions in waveguide structures

excited in the high-Q TEO ~~ mode, It is well known that

this can only be achieved if couplings among certain non-

cascaded cavities are realized with arbitrary signs. A new

structure satisfying the canonical form of multiple-coupled

cavity realization [1] is introduced.

One of the difficulties encountered in the utilization of

the TEO ~~ circular waveguide-cavit y mode for filter realiza-

tion is the presence of the degenerate TM1 ~~ mode. Methods

of splitting the degeneracy of the two modes are presented,


